We present a robust image synthesis method to automatically infer missing information from a damaged 2D image by tensor voting. Our method translates image color and texture information into an adaptive ND tensor, followed by a voting process that infers non-iteratively the optimal color values in the ND texture space for each defective pixel. ND tensor voting can be applied to images consisting of roughly homogeneous and periodic textures (e.g. a brick wall), as well as difficult images of natural scenes, which contain complex color and texture information. To effectively tackle the latter type of difficult images, a two-step method is proposed. First, we perform texture-based segmentation in the input image, and extrapolate partitioning curves to generate a complete segmentation for the image. Then, missing colors are synthesized using ND tensor voting. Automatic tensor scale analysis is used to adapt to different feature scales inherent in the input. We demonstrate the effectiveness of our approach using a difficult set of real images.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Image repairing: robust image synthesis by adaptive ND tensor voting


    Beteiligte:
    Jiaya Jia, (Autor:in) / Chi-Keung Tang, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    910554 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Image Repairing: Robust Image Synthesis by Adaptive ND Tensor Voting

    Jia, J. / Tang, C.-K. / IEEE | British Library Conference Proceedings | 2003


    Edge-preserving color image denoising through tensor voting

    Moreno, R. / Garcia, M. A. / Puig, D. et al. | British Library Online Contents | 2011


    Continuous multi-views tracking using tensor voting

    Jinman Kang, / Cohen, I. / Medioni, G. | IEEE | 2002


    Continuous Multi-View Tracking Using Tensor Voting

    Kang, J. / Cohen, I. / Medioni, G. | British Library Conference Proceedings | 2002


    ROD-TV: Reconstruction on Demand by Tensor Voting

    Tong, W.-S. / Tang, C.-K. / IEEE | British Library Conference Proceedings | 2003