The use of 2D laser scanners is attractive for the autonomous driving industry because of its accuracy, light-weight and low-cost. However, since only a 2D slice of the surrounding environment is detected at each scan, it is a challenge to execute important tasks such as the localization of the vehicle. In this paper we present a novel framework that explores the use of deep Recurrent Convolutional Neural Networks (RCNN) for odometry estimation using only 2D laser scanners. The application of RCNNs provides the tools to not only extract the features of the laser scanner data using Convolutional Neural Networks (CNNs), but in addition it models the possible connections among consecutive scans using the Long Short-Term Memory (LSTM) Recurrent Neural Network. Results on a real road dataset show that the method can run in real-time without using GPU acceleration and have competitive performance compared to other methods, being an interesting approach that could complement traditional localization systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An LSTM Network for Real-Time Odometry Estimation


    Beteiligte:


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    1025635 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Visual Odometry Covariance Estimation for Unmanned Air Vehicle Navigation

    Anderson, Michael L. / Brink, Kevin M. / Willis, Andrew R. | AIAA | 2019

    Freier Zugriff

    Method for Real-time Odometry Estimation using Mono camera and IMU sensor

    HWANG SANG WON / LEE SANG YOUN / LEE KYUNG JAE et al. | Europäisches Patentamt | 2019

    Freier Zugriff

    2.5D vehicle odometry estimation

    Ciarán Eising / Leroy‐Francisco Pereira / Jonathan Horgan et al. | DOAJ | 2022

    Freier Zugriff

    Real-time visual odometry estimation based on principal direction detection on ceiling vision

    Wang, H. / Mou, W. / Seet, G. et al. | British Library Online Contents | 2013


    2.5D vehicle odometry estimation

    Eising, Ciarán / Pereira, Leroy‐Francisco / Horgan, Jonathan et al. | Wiley | 2022

    Freier Zugriff