An unsupervised segmentation algorithm which uses Markov random fields for modeling color texture is presented. These models characterize a texture in terms of spatial interaction within each color plane and interaction among different color planes. These models are used for segmentation in conjunction with an agglomerative clustering procedure that at each step minimizes a global performance functional based on the conditional pseudo-likelihood of the image. This algorithm is successfully applied to a range of textured color images of natural scenes.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised segmentation of textured color images using Markov random field models


    Beteiligte:
    Panjwani, D.K. (Autor:in) / Healey, G. (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Format / Umfang :

    163840 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Markov random field image segmentation model for color textured images

    Kato, Z. / Pong, T. C. | British Library Online Contents | 2006



    Unsupervised Multistage Segmentation using Markov Random Field and Maximum Entropy Principle

    Lee, S. / Crawford, M. M. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994