Object Detection is an essential task in autonomous driving. The existing object detection methods are susceptible to the variable lighting, which leads to the decrease of detection accuracy. To address the above issue, we introduce LRPN, a robust detection network with multi-modal feature fusion based on prior knowledge of lidar points. LRPN aims to improve the accuracy of object detection in light changing scenes by using fusion method of sparse point cloud and image. We propose two fusion modules: 1) Sparse lidar feature are fused with image in the feature extractor network. 2) Guided anchors are created based on visual projection using lidar points. Our method is applied to Faster RCNN and achieved higher precision under different illumination conditions. Compared with the original Faster RCNN network, the mAP of the method proposed in this paper is raised by 2.2 % under good illumination and 3.7% under low illumination. The results show that the introduction of sparse point cloud can significantly improve the detection effect, especially in low illumination scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Object Detection Method Enhanced by Sparse Point Cloud for Low Illumination in Autonomous Driving


    Beteiligte:
    Li, Shuguang (Autor:in) / Liu, Bei (Autor:in) / Zhao, Yang (Autor:in) / Zheng, Ke (Autor:in) / Cheng, Hong (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    1662281 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Evaluation of Point Cloud Data Augmentation for 3D-LiDAR Object Detection in Autonomous Driving

    Martins, Marta / Gomes, Iago P. / Wolf, Denis Fernando et al. | Springer Verlag | 2024


    BEVDetNet: Bird's Eye View LiDAR Point Cloud based Real-time 3D Object Detection for Autonomous Driving

    Mohapatra, Sambit / Yogamani, Senthil / Gotzig, Heinrich et al. | IEEE | 2021


    Autonomous Driving Object Detection Platform

    Carabulea, Laurentiu / Pozna, Claudiu / Antonya, Csaba et al. | Springer Verlag | 2024


    Self-Supervised Point Cloud Prediction for Autonomous Driving

    Du, Ronghua / Feng, Rongying / Gao, Kai et al. | IEEE | 2024