Thanks to advances in computer power, traffic surveillance video processing is using deep learning algorithms more and more. Estimating a vehicle's speed is essential for managing traffic, lowering accident rates, and enhancing road design. Although they bring complexity issues, vision-based systems for speed estimate have advantages including accurate vehicle recognition and cheaper costs. A solution was put out in the 2018 NVIDIA AI City Challenge, which combined deep learning models with conventional computer vision techniques. The approach measures transit time between frames to estimate speed using Python and OpenCV image processing techniques including feature extraction and vehicle tracking. The significance of speed estimate for traffic safety and management is emphasized by this study.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Analysis with Lane-Level Vehicle Speed Estimation


    Beteiligte:


    Erscheinungsdatum :

    20.12.2024


    Format / Umfang :

    820523 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TRAFFIC LANE ESTIMATION METHOD AND TRAFFIC LANE ESTIMATION DEVICE

    SAKAI KANAKO / TSUCHIYA CHIKAO | Europäisches Patentamt | 2024

    Freier Zugriff

    Lane level traffic

    CHEN XIN / MA XIANG / OSTROVSKIY ROMAN et al. | Europäisches Patentamt | 2017

    Freier Zugriff

    TRAFFIC LANE ESTIMATION DEVICE AND TRAFFIC LANE ESTIMATION METHOD

    IIHOSHI AKIRA / KAKINUMA ATSUKI / OISHI YASUO et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Lane Level Traffic

    CHEN XIN / MA XIANG / OSTROVSKIY ROMAN et al. | Europäisches Patentamt | 2016

    Freier Zugriff

    LANE LEVEL TRAFFIC

    CHEN XIN / MA XIANG / OSTROVSKIY ROMAN et al. | Europäisches Patentamt | 2017

    Freier Zugriff