As an important device for disaster rescue, unmanned aerial vehicles(UAVs) are usually limited by their batteries and computational power to perform complex computational tasks during the rescue process. In response to the above situation, it is proposed that the disaster rescue makes parked vehicles collaboratively perform the application tasks generated by UAVs. We organize parked vehicles into parking clusters.. Then, a task scheduling model of deep reinforcement learning(DRL) is built, in which multiple vehicles in the parking cluster are chosen to execute task data together to ensure the quality of experience(QoE) of UAVs. The experimental results demonstrate that the proposed strategy achieves a lower execution cost and higher completion rate compared with other offloading strategies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unmanned Aerial Vehicle Data Uploading Using Parking Resources After Disaster Rescue


    Beteiligte:
    Wei, Yanmin (Autor:in) / Wang, Jinao (Autor:in) / Wang, Luyao (Autor:in)


    Erscheinungsdatum :

    14.07.2023


    Format / Umfang :

    1703769 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    After-disaster rescue unmanned aerial vehicle with search and rescue function

    SUN FENGQIN / TIAN YINQIAO / TANG XUELIAN | Europäisches Patentamt | 2022

    Freier Zugriff

    Unmanned aerial vehicle rescue device applied to emergency disaster relief

    LI JIE | Europäisches Patentamt | 2020

    Freier Zugriff


    Rescue unmanned aerial vehicle

    WANG HAILONG | Europäisches Patentamt | 2021

    Freier Zugriff

    Rescue unmanned aerial vehicle

    WANG HAILONG | Europäisches Patentamt | 2021

    Freier Zugriff