Reliable traffic flow prediction is of great value in the field of transportation, which, for example, contributes to traffic control and public safety. The key of achieving better performance is to well capture the non-linear spatial-temporal dependency. The state-of-the-art works consider both aspects, but they ignore the effect of the global trend on local dynamics and fail to capture long-term dynamic dependencies. In this article, we propose a novel Global-Local Temporal Convolutional Network (GL-TCN) to break through these limitations. Specifically, a novel local temporal convolutional mechanism is proposed to capture the long-term local dynamics effectively. Meanwhile, the global and local flow patterns are integrated to handle the effect of the global flow trend on local dynamics. To the best of our knowledge, this is the first work to utilize the temporal convolutional network for traffic flow prediction. Experiments on two real-world datasets demonstrate the superior performance of our method over several state-of-the-art baselines.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Global-Local Temporal Convolutional Network for Traffic Flow Prediction


    Beteiligte:
    Ren, Yajie (Autor:in) / Zhao, Dong (Autor:in) / Luo, Dan (Autor:in) / Ma, Huadong (Autor:in) / Duan, Pengrui (Autor:in)


    Erscheinungsdatum :

    01.02.2022


    Format / Umfang :

    1352065 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction

    Lv, Mingqi / Hong, Zhaoxiong / Chen, Ling et al. | IEEE | 2021


    Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network

    Wang, Hanqiu / Zhang, Rongqing / Cheng, Xiang et al. | IEEE | 2022


    Deep Spatio-Temporal Convolutional Neural Network for City Traffic Flow Prediction

    Zhou, Zhiyuan / Qin, Yanjun / Luo, Haiyong | IEEE | 2021



    Global spatio‐temporal dynamic capturing network‐based traffic flow prediction

    Haoran Sun / Yanling Wei / Xueliang Huang et al. | DOAJ | 2023

    Freier Zugriff