This paper presents a technique to obtain a discriminant basis set in an unsupervised way. A non-negative matrix factorization (NMF) is applied over a set of color newspapers to obtain a reduced space considering only positive constraints. This method is compared with the well-known principal component analysis (PCA), obtaining promising results in the task of representing independent behaviors of the input data. With this methodology, we are able to find an ordered list of the basis functions, with it being possible to select some of them for a further discriminant task. Moreover the method can also be applied to the task of automatically extracting object classes from a set of objects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Discriminant basis for object classification


    Beteiligte:
    Guillamet, D. (Autor:in) / Vitria, J. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    618726 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Discriminant Basis for Object Classification

    Guillamet, D. / Vitria, J. / IEEE | British Library Conference Proceedings | 2001


    Discriminant Analysis for Radar Signal Classification

    Guo, Shanzeng / Tracey, Hannah | IEEE | 2020


    A Probabilistic Contour Discriminant for Object Localisation

    MacCormick, J. P. / Blake, A. / IEEE; Computer Society | British Library Conference Proceedings | 1998



    Integrating representative and discriminant models for object category detection

    Fritz, M. / Leibe, B. / Caputo, B. et al. | IEEE | 2005