Modern vessels possess intricate structures and operate in harsh environments. The safety of their machinery and equipment presents a significant hazard. This paper proposes a fault identification method based on the fusion of features and models. Initially, the audio of ship mechanical equipment is processed to extract and fuse identification features, followed by training using an ensemble method of multiple neural network models. Ultimately, by analyzing the training loss and accuracy under various data samples and network models, the optimal data processing and network model fusion methods are established. Experimental results demonstrate that the classification accuracy of this method can reach 91%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault Identification of Marine Rotating Machinery Based on Feature Fusion and Model Fusion


    Beteiligte:
    Zhang, Linke (Autor:in) / Guan, Xiaoxi (Autor:in) / Cheng, Fangyuan (Autor:in) / Li, Shaowei (Autor:in) / Fan, Jinyang (Autor:in) / Yu, Yongsheng (Autor:in)


    Erscheinungsdatum :

    04.08.2023


    Format / Umfang :

    1798196 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Feature-level fusion in personal identification

    Yongsheng Gao, / Maggs, M. | IEEE | 2005


    Fault feature extraction, feature fusion, and severity identification approaches for AUVs with weak thruster faults

    Cui, Dingyu / Zhang, Tianchi / Zhang, Mingjun et al. | SAGE Publications | 2025


    Battery fault diagnosis method based on multi-dimensional feature fusion

    LIAO QIANGQIANG / WANG HONGZHE / ZHANG BINGYAO et al. | Europäisches Patentamt | 2025

    Freier Zugriff