3D object detection is a well-known problem for autonomous systems. Most of the existing methods use sensor fusion techniques with Radar, LiDAR, and Cameras. However, one of the challenges is to estimate the 3D shape and location of the adjoining vehicles from a single monocular image without other 3D sensors; such as Radar or LiDAR. To solve the lack of the depth information, a novel method for 3D vehicle detection is presented. In this work, instead of using the whole depth map and the viewing angle (allocentric angle), only the depth mask of each object is used to refine the projected centroid and estimate its egocentric angle directly. The performance of the proposed method is tested and validated using the KITTI dataset, obtaining similar results to other state-of-the-art methods for Monocular 3D Object Detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mono-DCNet: Monocular 3D Object Detection via Depth-based Centroid Refinement and Pose Estimation


    Beteiligte:


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    3128507 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Efficient Monocular Coarse-to-Fine Object Pose Estimation

    Feng, Rong / Zhang, Hong | British Library Conference Proceedings | 2016


    Pose estimation for monocular image object using convolution neural network

    Li, Hangyu / Wu, Han / Zhang, Zhilong et al. | IEEE | 2021



    Mono-LSDE: Lightweight Semantic-CNN for Depth Estimation from Monocular Aerial Images*

    Astudillo, Armando / Al-Kaff, Abdulla / Madridano, Angel et al. | IEEE | 2020


    SYSTEM AND METHOD TO IMPROVE MULTI-CAMERA MONOCULAR DEPTH ESTIMATION USING POSE AVERAGING

    GUIZILINI VITOR / AMBRUS RARES ANDREI / GAIDON ADRIEN DAVID et al. | Europäisches Patentamt | 2023

    Freier Zugriff