A block-processing methodology to dynamically estimate and cancel systematic multiple sensor errors is proposed and analyzed. Bias estimators are obtained from sequential consecutive blocks of measurement differences, achieving an accuracy equivalent to that reachable with an extended Kalman filter (EKF) operating over each pair, but with improved computational efficiency. The algorithm is formulated generically first and then applied to solve practical problems identified when fusing data on airport surfaces: global calibration, clock shift and local systematic deviations of sensor references. Performance, with significant improvement in tracking accuracy, is illustrated in simulated representative airport scenarios, fusing data from surface movement radar (SMR) and cooperative sensors


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On-line multi-sensor registration for data fusion on airport surface


    Beteiligte:


    Erscheinungsdatum :

    01.01.2007


    Format / Umfang :

    3511440 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Contrastive Multi-Modal Fusion for Enhanced Airport Surface Surveillance

    Chao, Xu / Cai, Kaiquan / Zhao, Peng et al. | IEEE | 2025



    A Multi-Sensor Approach to Airport Surface Traffic Tracking

    Stauffer, D. / French, H. / Lenz, J. et al. | British Library Conference Proceedings | 1993