LIDAR sensors enable object and free-space detection for intelligent transportation systems and vehicles. This paper proposes a recognition method for LIDARs based on only a few detection planes. This method is useful especially in the case when the angular resolution of the scan is sufficient, but in the vertical direction the planes are far from each other. We use Fourier descriptor to characterize a scan plane and Convolutional Neural Network for classification. Our method exploits both time varying shape information and contours from multiple scan planes if available. The method performs at least as well as the state of the art algorithms in case of near field, and it also expands the detection range. It was evaluated on tens of thousands of samples from large public datasets and we did separate evaluation for far field objects as well.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Object Detection From a Few LIDAR Scanning Planes


    Beteiligte:
    Rozsa, Zoltan (Autor:in) / Sziranyi, Tamas (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2019


    Format / Umfang :

    4620913 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Top-down object detection from LiDAR point clouds

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    RADAR LIDAR OBJECT DETECTION USING RADAR AND LIDAR FUSION

    MENG XIAOLI / ZHOU LUBING / SHETTI KARAN RAJENDRA | Europäisches Patentamt | 2023

    Freier Zugriff

    LiDAR SYSTEM INCLUDING OBJECT MOVEMENT DETECTION

    BERGAM JACOB A / SMITH ELLIOT JOHN | Europäisches Patentamt | 2023

    Freier Zugriff

    3D Object Shape Reconstruction from Underwater Multibeam Data and Over Ground Lidar Scanning

    Kulawiak, Marek / Łubniewski, Zbigniew | Online Contents | 2018