Trajectory planning enables Autonomous Mobile Robot (AMR) to have intelligence and avoid a collision in the interaction with obstacles. However, in scenes with multiple obstacles, most of the existing methods cannot minimize the collision risk. It is because that these methods do not distinguish the importance of the obstacles in the scene. Therefore, in this paper, we proposed an Obstacle-Centered Trajectory Planning (OCTP) method to solve the problem. In our method, a novel collision risk evaluation model is constructed, which considers the importance of each obstacle. In addition, a sliding-window-based key points interpolation method is used to smooth the velocity profile obeying constraints of collision risk and curvature. Finally, a comparison with the baseline method is performed. The experimental results show that the proposed method can effectively reduce AMR's collision risk in interacting with obstacles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Obstacle-Centered Trajectory Planning for Autonomous Mobile Robot


    Beteiligte:
    Jian, Zhiqiang (Autor:in) / Zhang, Songyi (Autor:in) / Chen, Shitao (Autor:in) / Zhang, Tangyike (Autor:in) / Nan, Zhixiong (Autor:in) / Zheng, Nanning (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    2896721 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Obstacle crossing type autonomous mobile robot

    XU LANBIN | Europäisches Patentamt | 2020

    Freier Zugriff

    Obstacle-crossing type autonomous mobile robot

    XU LANBIN | Europäisches Patentamt | 2020

    Freier Zugriff

    TRAJECTORY PLANNING WITH OBSTACLE AVOIDANCE FOR AUTONOMOUS DRIVING VEHICLES

    YU NING / ZHU FAN / XUE JINGJING | Europäisches Patentamt | 2022

    Freier Zugriff

    Trajectory planning with obstacle avoidance for autonomous driving vehicles

    YU NING / ZHU FAN / XUE JINGJING | Europäisches Patentamt | 2024

    Freier Zugriff

    Q-learning for autonomous mobile robot obstacle avoidance

    Ribeiro, Tiago / Gonçalves, Fernando / Garcia, Inês et al. | BASE | 2019

    Freier Zugriff