This paper addresses the adaptive target detection problem in Gaussian clutter edges. We employ a two-step generalized likelihood ratio test (GLRT) for the detection problem. Our main contribution lies in devising an iterative algorithm in the second step of the GLRT to obtain the maximum likelihood estimation of the unknown clutter-plus-noise covariance matrix, with all available secondary samples in the clutter edge (including the homogeneous and heterogeneous ones). We prove that the proposed iterative algorithm has guaranteed convergence of the objective value. At the analysis stage, we evaluate the performance of the proposed detector and show the superiority over its counterparts.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Target Detection in Gaussian Clutter Edges


    Beteiligte:
    Tang, Bo (Autor:in) / Liu, Jun (Autor:in) / Huang, Zhongrui (Autor:in) / Wang, Guisheng (Autor:in) / Fan, Fuhua (Autor:in)


    Erscheinungsdatum :

    01.04.2020


    Format / Umfang :

    1044444 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Target detection in non-gaussian clutter noise

    Davis, J.C. / Helferty, J.P. / Lisowski, J.J. | IEEE | 2003



    6.0604 Target Detection in Non-Gaussian Clutter Noise

    Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2003


    Adaptive detection schemes in compound-Gaussian clutter

    Conte, E. / Lops, M. / Ricci, G. | IEEE | 1998