This article proposes a Gaussian filtering method to approximate the single-target updates and normalizing constants for multitarget tracking with nonlinear, non-Gaussian measurements, and a state-dependent probability of detection. The Gaussian approximation is based on the posterior linearization technique, which seeks the optimal affine approximation of the nonlinearities in a mean square error sense. The normalizing constant is approximated using sigma-points based on the posterior. The proposed approach is implemented in a Poisson multi-Bernoulli mixture filter and compared against standard methods to approximate single-target posteriors and normalizing constants in two range-bearings tracking scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Gaussian Filtering Method for Multitarget Tracking With Nonlinear/Non-Gaussian Measurements


    Beteiligte:


    Erscheinungsdatum :

    01.10.2021


    Format / Umfang :

    576850 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch