In this paper, we address the problem of detecting pedestrians in crowded real-world scenes with severe overlaps. Our basic premise is that this problem is too difficult for any type of model or feature alone. Instead, we present an algorithm that integrates evidence in multiple iterations and from different sources. The core part of our method is the combination of local and global cues via probabilistic top-down segmentation. Altogether, this approach allows examining and comparing object hypotheses with high precision down to the pixel level. Qualitative and quantitative results on a large data set confirm that our method is able to reliably detect pedestrians in crowded scenes, even when they overlap and partially occlude each other. In addition, the flexible nature of our approach allows it to operate on very small training sets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian detection in crowded scenes


    Beteiligte:
    Leibe, B. (Autor:in) / Seemann, E. (Autor:in) / Schiele, B. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    992620 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Detection and Counting in Crowded Scenes

    Li, Juan / He, Qinglian / Yang, Liya et al. | British Library Conference Proceedings | 2018


    Pedestrian Detection and Counting in Crowded Scenes

    Li, Juan / He, Qinglian / Yang, Liya et al. | Springer Verlag | 2017


    Robust pedestrian detection and tracking in crowded scenes

    Kelly, P. / O'Connor, N. E. / Smeaton, A. F. | British Library Online Contents | 2009


    Occlusion-Robust Pedestrian Tracking in Crowded Scenes

    Gastel, Jeroen S. van / Zwemer, Matthijs H. / Wijnhoven, Rob G. J. et al. | IEEE | 2015