Scientifically measuring the complexity of traffic factors and accurately assessing the driver's mental load can help reduce driving risks and road accidents. In order to describe the complexity of traffic factors objectively and quantitatively, the comparison experiment of traffic factors with different complexity are carried out as the research basis. In this paper, the driver's electroencephalogram (EEG) signals obtained from the experiment are analyzed, and a complexity quantization method for traffic factors based on the difference between the predicted value and the actual value of the $a$ wave power spectral density in the parietal lobe of EEG is determined. Finally, based on the quantitative method, the complexity of pedestrian crossing, vehicle speed changing and vehicle lane changing are compared objectively and quantitatively in this paper.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Complexity of Traffic Factors Based on EEG Data


    Beteiligte:
    TAN, Jiyuan (Autor:in) / BI, Rui (Autor:in) / LI, Li (Autor:in) / GUO, Weiwei (Autor:in) / WANG, Yueqin (Autor:in)


    Erscheinungsdatum :

    16.10.2020


    Format / Umfang :

    1077836 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research Progress of Air Traffic Complexity

    WANG Hongyong / ZHANG Jiahao / WEN Ruiying | DOAJ | 2022

    Freier Zugriff

    Measurement of Controller Workloads Based on Air Traffic Complexity Factors

    Song, Zhuoxi / Chen, Yangzhou / Li, Zhenlong et al. | ASCE | 2012


    Investigating complexity factors in UK Air Traffic Management

    Kirwan, B. / Scaife, R. / Kennedy, R. | British Library Conference Proceedings | 2001


    Complexity in Air Traffic Control Towers. A Field Study Part 1: Complexity Factors

    A. Koros / P. S. Della Rocco / G. Panjwani et al. | NTIS | 2003


    Complexity of Driving Scenarios Based on Traffic Accident Data

    Dong, Xinchi / Zhang, Daowen / Mu, Yaoyao et al. | Springer Verlag | 2024