Rail transit has the advantages of stability, high efficiency, and no congestion. It is an essential traveling means for people currently. Combined with the real-time flow, the adaptive dispatch scheme can reduce operating costs and passenger waiting time. This paper designs an MDP simulation environment model for rail trains and gives an environment model under regular and occasional passenger flows. We combined the deep reinforcement learning method based on the value function, gave the method of feature extraction, and conducted experiments on the scheme under regular and occasional passenger flow. The results show that the combination of deep reinforcement learning methods can meet the needs of adaptive dispatch.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Railway Adaptive Dispatching Decision Method Based on Double DQN


    Beteiligte:
    Hou, Liang (Autor:in) / Huang, Dailin (Autor:in) / Cao, Jie (Autor:in) / Ma, Jialin (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    621700 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Railway dispatching system and communication dispatching method thereof

    LIN ZHIQIANG / LIANG CHUNWEN / CHEN ZHANGYONG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Railway dispatching method and system

    AN MENGMENG | Europäisches Patentamt | 2020

    Freier Zugriff

    Railway transportation dispatching system

    SUN JIKANG / WANG XINGWEN / XING CHUANZHONG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Empty train dispatching method and system based on railway dispatching contour plan

    WEN BINBIN / YI YUXIANG / HUANG SHENG-WEN et al. | Europäisches Patentamt | 2024

    Freier Zugriff