In this paper, sequential track correlation algorithm in a multisensor data fusion system is presented. It is well known that the state estimates obtained from a Kalman filter have correlated errors in time. While the innovations are white, this does not carry over to the state estimation errors. It should also be pointed out that the use of a sliding window for track-to-track association with the (appropriate) caveat that the distribution of the sum of chi-square variables over the window is only approximately chi-square distributed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On the sequential track correlation algorithm in a multisensor data fusion system


    Beteiligte:
    Bar Shalom, Y. (Autor:in)


    Erscheinungsdatum :

    01.01.2008


    Format / Umfang :

    81468 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch