Radar sensors are an important part of driver assistance systems and intelligent vehicles due to their robustness against all kinds of adverse conditions, e.g., fog, snow, rain, or even direct sunlight. This robustness is achieved by a substantially larger wavelength compared to light-based sensors such as cameras or lidars. As a side effect, many surfaces act like mirrors at this wavelength, resulting in unwanted ghost detections. In this article, we present a novel approach to detect these ghost objects by applying data-driven machine learning algorithms. For this purpose, we use a large-scale automotive data set with annotated ghost objects. We show that we can use a state-of-the-art automotive radar classifier in order to detect ghost objects alongside real objects. Furthermore, we are able to reduce the amount of false positive detections caused by ghost images in some settings.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Using Machine Learning to Detect Ghost Images in Automotive Radar


    Beteiligte:
    Kraus, Florian (Autor:in) / Scheiner, Nicolas (Autor:in) / Ritter, Werner (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    969590 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Machine Learning Applied to Blockage Classification in Automotive Radar

    Fetterman, Matt / Carlsen, Aret / Ru, Jifeng et al. | IEEE | 2020


    Identification of Ghost Moving Detections in Automotive Scenarios with Deep Learning

    Garcia, Javier Martinez / Prophet, Robert / Michel, Juan Carlos Fuentes et al. | IEEE | 2019


    GHOST REMOVING METHOD AND RADAR DEVICE

    TAKADA YUJI | Europäisches Patentamt | 2018

    Freier Zugriff