Training convolutional networks for semantic segmentation requires per-pixel ground truth labels, which are very time consuming and hence costly to obtain. Therefore, in this work, we research and develop a hierarchical deep network architecture and the corresponding loss for semantic segmentation that can be trained from weak supervision, such as bounding boxes or image level labels, as well as from strong per-pixel supervision. We demonstrate that the hierarchical structure and the simultaneous training on strong (per-pixel) and weak (bounding boxes) labels, even from separate datasets, consistently increases the performance against per-pixel only training. Moreover, we explore the more challenging case of adding weak image-level labels. We collect street scene images and weak labels from the immense Open Images dataset to generate the OpenScapes dataset, and we use this novel dataset to increase segmentation performance on two established per-pixel labeled datasets, Cityscapes and Vistas. We report performance gains up to +13.2% mIoU on crucial street scene classes, and inference speed of 20 fps on a Titan V GPU for Cityscapes at $512 \times 1024$ resolution. Our network and OpenScapes dataset are shared with the research community.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On Boosting Semantic Street Scene Segmentation with Weak Supervision


    Beteiligte:


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    985989 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Data Selection for training Semantic Segmentation CNNs with cross-dataset weak supervision

    Meletis, Panagiotis / Romijnders, Rob / Dubbelman, Gijs | IEEE | 2019



    Semantic video scene segmentation and transfer

    Gritti, T. / Damkat, C. / Monaci, G. | British Library Online Contents | 2014


    Single Network Panoptic Segmentation for Street Scene Understanding

    de Geus, Daan / Meletis, Panagiotis / Dubbelman, Gijs | IEEE | 2019


    Combining Semantic Self-Supervision and Self-Training for Domain Adaptation in Semantic Segmentation

    Niemeijer, Joshua / Schäfer, P. Jörg | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2021

    Freier Zugriff