In our recent paper we demonstrated that the standard Bayes classifier, when applied to a problem characterised by imprecise likelihood functions, produces results which are inconsistent with our intuition. As a more appropriate alternative to the standard Bayes classifier, we proposed in [1] a classification method based on the transferrable belief model (TBM). Mahler [2, ch. 4-8] recently proposed a novel approach to Bayesian estimation, fusion, and classification, applicable to situations where the information (priors, measurements, likelihoods) is imprecise and vague in addition to being random. The purpose of this letter is to demonstrate that Mahler's approach can produce identical results to those obtained using the TBM classifier.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Target Classification with Imprecise Likelihoods: Mahler's Approach


    Beteiligte:
    Ristic, B (Autor:in)


    Erscheinungsdatum :

    01.04.2011


    Format / Umfang :

    463799 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Gibbs likelihoods for Bayesian tracking

    Roth, S. / Sigal, L. / Black, M.J. | IEEE | 2004


    Stereo reconstruction using high-order likelihoods

    Jung, H. Y. / Park, H. / Park, I. K. et al. | British Library Online Contents | 2014


    Likelihoods of threats to connected vehicles

    Othmane, Lotfi ben / Fernando, Ruchith / Ranchal, Rohit et al. | Fraunhofer Publica | 2014

    Freier Zugriff

    Gibbs Likelihoods for Bayesian Tracking

    Roth, S. / Sigal, L. / Black, M. et al. | British Library Conference Proceedings | 2004