In this paper we address the problem of optimal parameter selection for a Multilayer Perceptron by means of a neural network with only one hidden layer that uses the "back propagation" algorithm over relatively simple classification problems in two dimensions (input patterns with only two variables). We will show graphically the direct relation existing between the increasing complexity regions (classes) and the necessity to add more neurons in the hidden layer. At the end, we summarize our findings by means of parameter selection recommendations in order to avoid the tedious and blind "trial and error" method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Toward Optimal Parameter Selection for the Multi-layer Perceptron Artificial Neural Network


    Beteiligte:


    Erscheinungsdatum :

    01.11.2013


    Format / Umfang :

    470903 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automatic Incident Detection on Freeways Using Multi-Layer Perceptron Neural Network

    Wen, H. / Yang, Z. / Jiang, G. et al. | British Library Conference Proceedings | 2002


    Thermal Conductivity Prediction of Pure Liquids Using Multi-Layer Perceptron Neural Network

    Najafi, Alireza / Hamzehie, Mohammad Ehsan / Najibi, Hesam et al. | AIAA | 2015


    Multi-Layer Perceptron Based Lung Tumor Classification

    Potghan, Sneha / Rajamenakshi, R. / Bhise, Archana | IEEE | 2018



    Non-linear point distribution modelling using a multi-layer perceptron

    Sozou, P. D. / Cootes, T. F. / Taylor, C. J. et al. | British Library Online Contents | 1997