An exploit of the sequential importance sampling (SIS) algorithm using differential algebra techniques is derived to develop an efficient particle filter. The filter creates an original kind of particles, called scout particles, that bring information from the measurement noise onto the state prior probability density function. Thanks to the creation of high-order polynomial maps and their inversions, the scouting of the measurements helps the SIS algorithm identify the region of the prior more affected by the likelihood distribution. The result of the technique is two different versions of the proposed scout particle filter (SPF), which identifies and delimits the region where the true posterior probability has high density in the SIS algorithm. Four different numerical applications show the benefits of the methodology both in terms of accuracy and efficiency, where the SPF is compared to other particle filters, with a particular focus on target tracking and orbit determination problems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Likelihood Scouting via Map Inversion for a Posterior-Sampled Particle Filter


    Beteiligte:


    Erscheinungsdatum :

    01.02.2025


    Format / Umfang :

    4342695 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Scouting Out UTVs

    Online Contents | 2009


    AUTONOMOUS SCOUTING RAIL VEHICLE

    FILIPPONE CLAUDIO | Europäisches Patentamt | 2019

    Freier Zugriff

    Scouting activity at Eea

    Pini, W. | Engineering Index Backfile | 1931


    Scouting Out A New Flagship

    Online Contents | 2010


    Robotic Scouting for Human Exploration

    Deans, M. / Fong, T. / Allen, M. et al. | British Library Conference Proceedings | 2009