Autonomous driving has attracted a significant amount of research efforts over the last few decades owing to the exponential growth of computational power and reduced cost of sensors. As a safety-sensitive task, autonomous driving needs a detailed level of scene understanding of decision making, planning, and control. This paper investigates the Convolutional Neural Network (CNN) based methods for affordance learning in driving scene understanding. Various perception models are built and evaluated for driving scene affordance learning in both the virtual environment and real sampled data. We also propose a conditional control model that maps the extracted coarse set of driving affordances to low-level control condition on the given driving priors. The performance, merits of the CNN based perception models, and the control model are analyzed and cross-validated on both virtual and real data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cross Validation for CNN based Affordance Learning and Control for Autonomous Driving


    Beteiligte:
    Sun, Chen (Autor:in) / Su, Lang (Autor:in) / Gu, Sunsheng (Autor:in) / Uwabeza Vianney, Jean M. (Autor:in) / Qin, Kongjian (Autor:in) / Cao, Dongpu (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    857366 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Affordance Based Disambiguation and Validation in Human-Robot Dialogue

    Wölfel, Kim / Henrich, Dominik | Springer Verlag | 2020

    Freier Zugriff

    AUTOMATIC LIDAR CALIBRATION BASED ON CROSS VALIDATION FOR AUTONOMOUS DRIVING

    CHU FAN | Europäisches Patentamt | 2020

    Freier Zugriff

    AUTONOMOUS DRIVING VALIDATION SYSTEM

    JONES TIMOTHY | Europäisches Patentamt | 2024

    Freier Zugriff