RippleNet network combines path and entity information, and is successfully applied to recommendation systems. Nevertheless, the model ignores the impact of the relationships between the entities. As a result, this paper introduces an enhanced RippleNet model that incorporates the impact of entity relationships into the preference propagation model by mapping the entity embedding into the relation vector space and integrates it into RippleNet as entity weights. And according to user historical data, preferences are propagated on the knowledge graph. The experimental findings manifest that the new approach enhances the AUC and ACC values of RippleNet, surpassing other baseline methods. These results show that our model effectively addresses the issue of the inter-entity relationship not being considered in the RippleNet network, resulting in recommendation outcomes that better align with user expectations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Knowledge Graph Preference Propagation Recommendation Algorithm Based on Introducing Relational Information


    Beteiligte:
    Chen, Rui (Autor:in) / Meng, Qinglei (Autor:in)


    Erscheinungsdatum :

    11.10.2023


    Format / Umfang :

    2664694 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Singular Value Decomposition Recommendation Algorithm Considering User's Preference for Item Attributes

    Wei, Gangming / Liu, Zhen / Li, Linfeng et al. | British Library Online Contents | 2018


    Travel recommendation method based on knowledge graph and traffic speed prediction

    HE CHUNHONG / WU LIANGHONG / REN BIN | Europäisches Patentamt | 2024

    Freier Zugriff


    Reinforcement recommendation with user multi-aspect preference

    Chen, X / Du, Y / Xia, L et al. | BASE | 2021

    Freier Zugriff

    Personalized and relational approach for travel package recommendation

    Popat, Komal / Thorat, Tejaswini / Vidhate, Manisha et al. | IEEE | 2015