In the diverse landscape of 6G networks, where wireless connectivity demands surge and spectrum resources remain limited, flexible spectrum access becomes paramount. The success of crafting such schemes hinges on our ability to accurately characterize spectrum demand patterns across space and time. This paper presents a data-driven methodology for estimating spectrum demand variations over space and identifying key drivers of these variations in the mobile broadband landscape. By leveraging geospatial analytics and machine learning, the methodology is applied to a case study in Canada to estimate spectrum demand dynamics in urban regions. Our proposed model captures 70% of the variability in spectrum demand when trained on one urban area and tested on another. These insights empower regulators to navigate the complexities of 6G networks and devise effective policies to meet future network demands.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Flexible Spectrum Access: Data-Driven Insights into Spectrum Demand


    Beteiligte:


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    1407386 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Derivation of wave spectrum using data driven methods

    Sakhare, S. / Deo, M. C. | British Library Online Contents | 2009


    Wideband, flexible, radio frequency spectrum analyzer

    Lorgere, I. / Lavielle, V. / De Seze, F. et al. | IEEE | 2003


    Short paper: Probing the spectrum with vehicles: Towards an advanced spectrum database

    Fujii, Takeo / Inage, Kei / Kitamura, Masayuki et al. | IEEE | 2013