Coverage Path Planning (CPP) is crucial for UAV applications such as inspection and surveying. While existing CPP methods often focus on minimizing distance or time, energy consumption remains a critical, relatively unexamined constraint, especially for multirotor drones. This paper proposes a novel CPP approach that directly incorporates an energy model into the path-planning process. By utilizing a Mixed Integer Linear Programming (MILP) framework and an energy model, the proposed method aims to minimize energy consumption while ensuring complete coverage of the target area. Simulations and experimental results demonstrate that the proposed approach gives optimal solutions, and using this richer cost function reduces the processing time for the MILP problem, opening the door for faster online CPP planners.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Energy-Aware Coverage Path Planner for Multirotor UAVS


    Beteiligte:


    Erscheinungsdatum :

    14.05.2025


    Format / Umfang :

    3479974 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CEO-MLCPP: Control-Efficient and Obstacle-Aware Multi-Layer Coverage Path Planner for 3D Reconstruction with UAVs

    Lee, Eungchang Mason / Jung, Sungwook / Song, Seungwon et al. | Springer Verlag | 2023


    Modeling Power Consumptions for Multirotor UAVs

    Gong, Hao / Huang, Baoqi / Jia, Bing et al. | IEEE | 2023




    Optimal Energy-Efficient Trajectory Planning for Multirotor UAVs

    Chebl, Bernard / Saied, Majd / Shraim, Hassan et al. | IEEE | 2025