The main contribution of this paper is a comparison of different machine learning algorithms for vehicle classification according to the "Nordic system for intelligent classification of vehicles" standard using measurements of road surface vibrations and magnetic field disturbances caused by vehicles. The algorithms considered are logistic regression, neural networks, and support vector machines. They are evaluated on a large dataset, consisting of 3074 samples and hence, a good estimate of the actual classification rate is obtained. The results show that for the considered classification problem logistic regression is the best choice with an overall classification rate of 93.4%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparison of Machine Learning Techniques for Vehicle Classification Using Road Side Sensors


    Beteiligte:
    Kleyko, Denis (Autor:in) / Hostettler, Roland (Autor:in) / Birk, Wolfgang (Autor:in) / Osipov, Evgeny (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    211543 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Road vehicle classification using machine learning techniques

    Al-Tarawneh, Mu'ath / Huang, Ying | British Library Conference Proceedings | 2019


    Road vehicle classification using machine learning techniques

    Al-Tarawneh, Mu'ath / Huang, Ying | SPIE | 2019


    Vehicle classification using road side sensors and feature-free data smashing approach

    Kleyko, Denis / Hostettler, Roland / Lyamin, Nikita et al. | IEEE | 2016


    Dynamic Mapping of Road Conditions Using Smartphone Sensors and Machine Learning Techniques

    Gawad, Shahd Mohamed Abdel / El Mougy, Amr / El-Meligy, Menna Ahmed | IEEE | 2016


    ROAD-SIDE SENSORS AND IDENTIFIERS

    CLIFFORD DAVID HAHN | Europäisches Patentamt | 2022

    Freier Zugriff