Recent advances in autonomous driving have shown the importance of endowing self-driving cars with the ability of predicting the intentions and future trajectories of other traffic participants. In this paper, we introduce the PREVENTION dataset, which provides a large number of accurate and detailed annotations of vehicles trajectories, categories, lanes, and events, including cut-in, cut-out, left/right lane changes, and hazardous maneuvers. Data is collected from 6 sensors of different nature (LiDAR, radar, and cameras), providing both redundancy and complementarity, using an instrumented vehicle driven under naturalistic conditions. The dataset contains 356 minutes, corresponding to 540 km of distance traveled, including more than 4M detections, and more than 3K trajectories. Each vehicle is unequivocally identified with a unique id and the corresponding image, LiDAR and radar coordinates. No other public dataset provides such a rich amount of data on different road scenarios and critical situations and such a long-range coverage around the ego-vehicle (up to 80 m) using a redundant sensor set-up and providing enhanced lane-change annotations of surrounding vehicles. The dataset is ready to develop learning and inference algorithms for predicting vehicles intentions and future trajectories, including inter-vehicle interactions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The PREVENTION dataset: a novel benchmark for PREdiction of VEhicles iNTentIONs


    Beteiligte:
    Izquierdo, R. (Autor:in) / Quintanar, A. (Autor:in) / Parra, I. (Autor:in) / Fernandez-Llorca, D. (Autor:in) / Sotelo, M. A. (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    2691825 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle-BD: A Benchmark Dataset of Bangladeshi Local Vehicles

    Rahman, Md Sazedur / Hassan, Md Zahim / Ibtisum, Sifat | Springer Verlag | 2025


    Benchmark Dataset Collection

    IEEE | 2005

    Freier Zugriff

    Open Call for Benchmark/Test Dataset

    IEEE | 2005

    Freier Zugriff

    OPERATION OF VEHICLE IN QUESTION USING PREDICTION OF INTENTIONS OF REMOTE VEHICLES

    ZHAO YUE / MORTAZAVI ALI | Europäisches Patentamt | 2020

    Freier Zugriff

    RSIn-Dataset: An UAV-Based Insulator Detection Aerial Images Dataset and Benchmark

    Feng Shuang / Sheng Han / Yong Li et al. | DOAJ | 2023

    Freier Zugriff