There is a growing interest in the use of Artificial Intelligence (AI) techniques for urban traffic control, with a particular focus on traffic signal optimisation. AI-based approaches demonstrated to be capable of dealing in real-time with unexpected or unusual traffic conditions, as well as with the usual traffic patterns. To effectively perform their task, AI approaches require the design of ad-hoc techniques, usually under the form of heuristics to guide the search process. In this paper, leveraging on the successful application of automated planning to urban traffic control, we introduce an innovative heuristic and test it using real-world historical data. The experimental analysis shows that the proposed heuristic allows to quickly generate high-quality traffic signal strategies, that outperform those generated by the SCOOT framework currently deployed in the considered region.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Efficient Heuristic for AI-based Urban Traffic Control


    Beteiligte:
    Percassi, Francesco (Autor:in) / Bhatnagar, Saumya (Autor:in) / Guo, Rongge (Autor:in) / Mccabe, Keith (Autor:in) / Mccluskey, Thomas L. (Autor:in) / Vallati, Mauro (Autor:in)


    Erscheinungsdatum :

    14.06.2023


    Format / Umfang :

    636720 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Heuristic Fuzzy Control of Traffic Junctions in Urban Areas

    Vatchova, Boriana / Boneva, Yordanka / Gegov, Alexander | IEEE | 2021


    Railway junction traffic control by heuristic methods

    Ho, T.K. / Yeung, T.H. | Tema Archiv | 2001



    Railway junction traffic control by heuristic methods

    Ho, T.K. / Yeung, T.H. | IET Digital Library Archive | 2001


    Heuristic Algorithm for Priority Traffic Signal Control

    He, Qing / Head, K. Larry / Ding, Jun | Transportation Research Record | 2011