Outdoor scene classification is challenging due to irregular geometry, uncontrolled illumination, and noisy reflectance distributions. This paper discusses a Bayesian approach to classifying a color image of an outdoor scene. A likelihood model factors in the physics of the image formation process, sensor noise distribution, and prior distributions over geometry, material types, and illuminant spectrum parameters. These prior distributions are learned through a training process that uses color observations of planar scene patches over time. An iterative linear algorithm estimates the maximum likelihood reflectance, spectrum, geometry, and object class labels for a new image. Experiments on images taken by outdoor surveillance cameras classify known material types and shadow regions correctly, and flag as outliers material types that were not seen previously.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian color constancy for outdoor object recognition


    Beteiligte:
    Yanghai Tsin, (Autor:in) / Collins, R.T. (Autor:in) / Ramesh, V. (Autor:in) / Kanade, T. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    864748 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Bayesian Color Constancy for Outdoor Object Recognition

    Tsin, Y. / Collins, R. T. / Ramesh, V. et al. | British Library Conference Proceedings | 2001


    Color constancy for landmark detection in outdoor environments

    Todt, Eduardo / Torras, Carme | BASE | 2001

    Freier Zugriff

    Bootstrapping color constancy

    Funt, B. V. / Cardei, V. C. / SPIE et al. | British Library Conference Proceedings | 1999



    Bayesian Decision Theory, the Maximum Local Mass Estimate, and Color Constancy

    Freeman, W. / Brainard, D. / IEEE Computer Society et al. | British Library Conference Proceedings | 1995