In this paper, we propose a system using video cameras to perform vehicle identification. We tackle this problem by reconstructing an input by using multiple linear regression models and compressed sensing, which provide new ways to deal with three crucial issues in vehicle identification, namely, feature extraction, online vehicle identification database buildup , and robustness to occlusions and misalignment. The results show the capability of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Identification Via Sparse Representation


    Beteiligte:
    Wang, Shuang (Autor:in) / Cui, Lijuan (Autor:in) / Liu, Dianchao (Autor:in) / Huck, Robert (Autor:in) / Verma, Pramode (Autor:in) / Sluss, James J. (Autor:in) / Cheng, Samuel (Autor:in)


    Erscheinungsdatum :

    01.06.2012


    Format / Umfang :

    827095 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Method for Preceding Vehicle Type Classification Based on Sparse Representation

    Chong, Yanwen / Chen, Wu / Li, Zhilin et al. | Transportation Research Record | 2011


    Sparse Representation Shape Models

    Li, Y. | British Library Online Contents | 2014


    Vehicle make and model recognition using sparse representation and symmetrical SURFs

    Chen, Li-Chih / Hsieh, Jun-Wei / Yan, Yilin et al. | IEEE | 2013