Robust sensing and perception in adverse weather conditions remain one of the biggest challenges for realizing reliable autonomous vehicle mobility services. Prior work has established that rainfall rate is a useful measure for the adversity of atmospheric weather conditions. This work presents a probabilistic hierarchical Bayesian model that infers rainfall rate from automotive lidar point cloud sequences with high accuracy and reliability. The model is a hierarchical mixture of experts model, or a probabilistic decision tree, with gating and expert nodes consisting of variational logistic and linear regression models. Experimental data used to train and evaluate the model is collected in a large-scale rainfall experiment facility from both stationary and moving vehicle platforms. The results show prediction accuracy comparable to the measurement resolution of a disdrometer, and the soundness and usefulness of the uncertainty estimation. The model achieves RMSE 2.42mm/h after filtering out uncertain predictions. The error is comparable to the mean rainfall rate change of 3.5mm/h between measurements. Model parameter studies show how predictive performance changes with tree depth, sampling duration, and crop box dimension. A second experiment demonstrates the predictability of higher rainfall above 300mm/h using a different lidar sensor, demonstrating sensor independence.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic Rainfall Estimation from Automotive Lidar


    Beteiligte:
    Karlsson, Robin (Autor:in) / Wong, David Robert (Autor:in) / Kawabata, Kazunari (Autor:in) / Thompson, Simon (Autor:in) / Sakai, Naoki (Autor:in)


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    2415674 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automotive LIDAR

    Gotzig, Heinrich / Geduld, Georg | Springer Verlag | 2015


    A Stochastic Physical Simulation Framework to Quantify the Effect of Rainfall on Automotive Lidar

    Buschardt, Boris / Straub, Daniel / Kroll, Hans-Martin et al. | SAE Technical Papers | 2019


    A Stochastic Physical Simulation Framework to Quantify the Effect of Rainfall on Automotive Lidar

    Berk, Mario / Dura, Michael / Rivero, Jose Vargas et al. | British Library Conference Proceedings | 2019


    Automotive LiDAR Technology: A Survey

    Roriz, Ricardo / Cabral, Jorge / Gomes, Tiago | IEEE | 2022


    Robust 3D IMU-LIDAR calibration and multi sensor probabilistic state estimation

    Mora Martínez, Alejandro | BASE | 2020

    Freier Zugriff