The Intelligent Payload Experiment (IPEX) is a CubeSat mission to flight validate technologies for onboard instrument processing and autonomous operations for NASA's Earth Science Technologies Office (ESTO). Specifically IPEX is to demonstrate onboard instrument processing and product generation technologies for the Intelligent Payload Module (IPM) of the proposed Hyperspectral Infra-red Imager (HyspIRI) mission concept. Many proposed future missions, including HyspIRI, are slated to produce enormous volumes of data requiring either significant communication advancements or data reduction techniques. IPEX demonstrates several technologies for onboard data reduction, such as computer vision, image analysis, image processing and in general demonstrates general operations autonomy. We conclude this paper with a number of lessons learned through operations of this technology demonstration mission on a novel platform for NASA.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomy for remote sensing — Experiences from the IPEX CubeSat


    Beteiligte:
    Doubleday, Joshua (Autor:in) / Chien, Steve (Autor:in) / Norton, Charles (Autor:in) / Wagstaff, Kiri (Autor:in) / Thompson, David R. (Autor:in) / Bellardo, John (Autor:in) / Francis, Craig (Autor:in) / Baumgarten, Eric (Autor:in)


    Erscheinungsdatum :

    01.07.2015


    Format / Umfang :

    285160 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Onboard Processing and Autonomous Operations on the IPEX Cubesat

    Chien, Steve / Doubleday, Joshua / Ortega, Kevin et al. | NTRS | 2012



    Development of intelligent remote sensing payloads for CubeSat applications

    Juang, Jyh-Ching / Lee, Pei-Jun | SPIE | 2025

    Freier Zugriff

    Registration and correction techniques in Cubesat remote sensing images

    Lazreg, Nissen / Bouchiha, Rochdi / Besbes, Kamel | IEEE | 2017