Support vector machines have shown great potential for learning classification functions that can be applied to object recognition. In this work, we extend SVMs to model the 2D appearance of human faces which undergo nonlinear change across the view sphere. The model enables simultaneous multi-view face detection and pose estimation at near-frame rate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-view face detection and pose estimation using a composite support vector machine across the view sphere


    Beteiligte:
    Ng, J. (Autor:in) / Shaogang Gong (Autor:in)


    Erscheinungsdatum :

    01.01.1999


    Format / Umfang :

    1124263 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

    Li, S. / Fu, Q. / Gu, L. et al. | British Library Conference Proceedings | 2001


    Support vector machine based multi-view face detection and recognition

    Li, Y. / Gong, S. / Sherrah, J. et al. | British Library Online Contents | 2004


    Kernel machine based learning for multi-view face detection and pose estimation

    Li, S.Z. / Qingdong Fu, / Lie Gu, et al. | IEEE | 2001


    A view-based statistical system for multi-view face detection and pose estimation

    Chen, J. C. / Lien, J. J. | British Library Online Contents | 2009