How to utilize the limited antennas for tracking multiple targets plays a critical role in the collocated multiple-input multiple-output radar. A dynamic antenna selection strategy is proposed to address this problem. The basis of our strategy is to achieve the optimal antenna selection under the constraint of limited active antennas using the feedback information in the tracking recursion cycle, improving the worst case of estimate accuracy among multiple targets. Since the posterior Cramer–Rao lower bound quantifies the target tracking performance, it is derived and utilized as the optimization criterion. We then propose an efficient algorithm which integrates the convex relaxation technique with the local search to solve the problem. Simulation results show its superior performance compared with the random antenna selection strategy and the heuristic search algorithm. Moreover, the proposed strategy can provide the performance close to the exhaustive search method while maintaining reasonable runtime.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Antenna Selection for Target Tracking in Collocated MIMO Radar


    Beteiligte:
    Zhang, Haowei (Autor:in) / Shi, Junpeng (Autor:in) / Zhang, Qiliang (Autor:in) / Zong, Binfeng (Autor:in) / Xie, Junwei (Autor:in)


    Erscheinungsdatum :

    01.02.2021


    Format / Umfang :

    3233846 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimal Antenna Allocation in MIMO Radars with Collocated Antennas

    Gorji, A. A. / Tharmarasa, R. / Kirubarajan, T. | IEEE | 2014


    Monopulse MIMO Radar for Target Tracking

    Gogineni, Sandeep / Nehorai, Arye | IEEE | 2011


    Reconfigurable Linear Antenna Arrays for Beam-Pattern Matching in Collocated MIMO Radars

    Ghafi, Esmaeil Kavousi / Ghorashi, Seyed Ali / Mehrshahi, Esfandiar | IEEE | 2021


    MIMO radar target tracking using the probability hypothesis density filter

    Glass, John D. / Lanterman, Aaron D. | IEEE | 2012