In this paper, we investigate low complexity detection method to compensate the severe inter- symbol interference (ISI) introduced in Faster- than-Nyquist (FTN) Signaling based on a special circulated block transmission model. First, the optimal detection problem is formulated as a Boolean Quadratic Program (BQP). Through relax technique, the original non-convex problem is approximated by a L1-Norm constraint minimization problem. The relaxed convex problem is then efficiently tackled by the proposed Alternating Direction Method of Multipliers (ADMM) based algorithm. Finally, we generalize the algorithm to parallel computing implementation and High-order modulation case. Simulation results show that the proposed scheme can achieve better trade-off between Bit Error Rate (BER) performance and computational complexity than Frequency Domain Equalization (FDE) and Maximum Likelihood Sequence Estimation (MLSE).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Low-Complexity Symbol Detection for FTN Signaling by Combinatorial L1-Norm Relaxation


    Beteiligte:
    Lai, Shihao (Autor:in) / Li, Mingqi (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    191492 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Low-complexity Delay-Doppler Symbol DNN for OTFS Signal Detection

    Naikoti, Ashwitha / Chockalingam, A. | IEEE | 2021


    MSK Receiver with Low Complexity and Multi-symbol Joint Detection

    Wu, Chunfei / Zhao, Yue / Ni, Xuanhao | IEEE | 2018



    Multiple-Symbol Differential Detection Of MPSK

    Divsalar, Dariush / Simon, Marvin K. | NTRS | 1991


    Traffic Symbol Detection and Recognition System

    Zakir Hussain, K. Md. / Kattigenahally, Komal Nagaraj / Nikitha, S. et al. | Springer Verlag | 2021