This paper studies the stochastic on-time arrival (SOTA) problem in transportation networks and introduces a novel reinforcement learning-based algorithm, namely sample efficient generalized actor critic (SEGAC). Different from almost all canonical SOTA solutions, which are usually computationally expensive and lack generalizability to unforeseen destination nodes, SEGAC offers the following appealing characteristics. SEGAC updates the ego vehicle’s navigation policy in a sample efficient manner, reduces the variance of both value network and policy network during training, and is automatically adaptive to new destinations. Furthermore, the pre-trained SEGAC policy network enables its real-time decision-making ability within seconds, outperforming state-of-the-art SOTA algorithms in simulations across various transportation networks. We also successfully deploy SEGAC to two real metropolitan transportation networks, namely Chengdu and Beijing, using real traffic data, with satisfying results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SEGAC: Sample Efficient Generalized Actor Critic for the Stochastic On-Time Arrival Problem


    Beteiligte:
    Guo, Hongliang (Autor:in) / He, Zhi (Autor:in) / Sheng, Wenda (Autor:in) / Cao, Zhiguang (Autor:in) / Zhou, Yingjie (Autor:in) / Gao, Weinan (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.08.2024


    Format / Umfang :

    11380593 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Actor-Critic Policy Learning in Cooperative Planning

    Redding, Joshua / Geramifard, Alborz / Choi, Han-Lim et al. | AIAA | 2010


    Actor-Critic Policy Learning in Cooperative Planning

    Redding, J. / Geramifard, A. / Choi, H.-L. et al. | British Library Conference Proceedings | 2010



    Multiagent Soft Actor–Critic for Traffic Light Timing

    Wu, Lan / Wu, Yuanming / Qiao, Cong et al. | ASCE | 2023