This paper outlines the application of multiple linear regression and three different data-driven modeling techniques to river level forecasting for the River Ouse Catchment in northern England. Lead times of 6 and 24 hours ahead were modelled. The results show that the data driven approaches generally outperformed the statistical approach and that M5 model trees have great potential for the development of transparent river level forecasting models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Rainfall-Runoff Modelling using Data Driven and Statistical Methods


    Beteiligte:
    Khan, Saadat (Autor:in) / See, Linda (Autor:in)


    Erscheinungsdatum :

    01.09.2006


    Format / Umfang :

    267948 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Data-driven approaches for estimating uncertainty in rainfall-runoff modelling

    Shrestha, D.L. / Solomatine, D.P. | British Library Online Contents | 2008


    Rainfall-runoff modelling: The primer

    Bates, P. | British Library Online Contents | 2003


    Modelling runoff for extreme rainfall events on large catchments using TELEMAC-2D

    Travert, Jean-Paul / Taccone, Florent / Bacchi, Vito | HENRY – Bundesanstalt für Wasserbau (BAW) | 2022

    Freier Zugriff


    Hydrologic vs Hydraulic Rainfall-Runoff Modeling

    Horst, Michael | British Library Conference Proceedings | 2022