The significance of maritime transportation highlights the need to enhance the efficiency of container terminals. This study addresses a challenge within maritime transportation, specifically the continuous berth allocation and time-variant quay crane assignment problem (C/T-V BACAP). We formulate a comprehensive mathematical model of C/T-V BACAP. To solve the problem, we propose an effective memetic algorithm with a heuristic decoding method, named HMA, which comprises three essential components: a three-stage heuristic decoding method, a clustering-based evolutionary strategy, and a target-guided local search operator. The three-stage heuristic decoding method guarantees solution feasibility and high quality through the entire optimization, allowing the following strategies to fully utilize their search capabilities. The clustering-based evolutionary strategy refines the search space and diversifies the promising candidates. Meanwhile, the target-guided local search operator rapidly optimizes the allocation for the challenging vessel. The experimental results demonstrate that the proposed algorithm delivers excellent performance, especially in handling large-scale instances (up to 60 vessels). Our proposed method outperforms the state-of-the-art BACAP algorithms by an average margin of 150% in terms of berth offset and waiting time in most problem instances.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Continuous Berth Allocation and Time-Variant Quay Crane Assignment: Memetic Algorithm With a Heuristic Decoding Method


    Beteiligte:
    Xu, Li-Sha (Autor:in) / Huang, Ting (Autor:in) / Zhao, Bo-Wen (Autor:in) / Gong, Yue-Jiao (Autor:in) / Liu, Jing (Autor:in)


    Erscheinungsdatum :

    01.03.2025


    Format / Umfang :

    2908591 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch