Most of the common lane recognition systems are designed to work on well structured roads and rely on the existence of markings. In this paper we present a lane recognition scheme for country roads. Our novel approach works even in the absence of markings. The parameter estimation is formulated as a maximum-a-posteriori estimation task fusing color, texture, and edges. The framework can easily be extended by additional features not considered here. The optimization is carried out by means of a particle filter. Efficient computation schemes allow running the system in video real-time using a standard PC. The proposed algorithm can cope with varying feature statistics. Practical tests prove the robustness on marked as well as unmarked roads.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Lane Recognition on Country Roads


    Beteiligte:
    Franke, U. (Autor:in) / Loose, H. (Autor:in) / Knoppel, C. (Autor:in)


    Erscheinungsdatum :

    01.06.2007


    Format / Umfang :

    1615172 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lane Recognition on Country Roads

    Franke, U. / Loose, H. / Knoppel, C. et al. | British Library Conference Proceedings | 2007


    Detecting reflection posts - lane recognition on country roads

    von Trzebiatowski, M.S. / Gern, A. / Franke, U. et al. | IEEE | 2004


    MPP1.05 Detecting Reflection Posts - Lane Recognition on Country Roads

    von Trzebiatowski, M. S. / Gern, A. / Franke, U. et al. | British Library Conference Proceedings | 2004


    Single Lane Roads

    A. J. Koning | NTIS | 1987


    Kalman Particle Filter for Lane Recognition on Rural Roads

    Loose, H. / Franke, U. / Stiller, C. | British Library Conference Proceedings | 2009