This paper introduces a new anisotropic diffusion algorithm for enhancing and segmenting multispectral image data. The algorithm is based upon mean curvature motion. Using a modified image gradient computation, the diffusion method is further improved by allowing the control of feature scale, and the sensitivity to heavy-tailed noise is eliminated. For comparison, a vector distance dissimilarity method is introduced and extended for multi-scale processing. The experiments on remotely sensed imagery and color imagery demonstrate the performance of the algorithms in terms of image entropy reduction and impulse elimination as well as visual quality.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modified mean curvature motion for multispectral anisotropic diffusion


    Beteiligte:
    Pope, K. (Autor:in) / Acton, S.T. (Autor:in)


    Erscheinungsdatum :

    01.01.1998


    Format / Umfang :

    1461713 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Modified Mean Curvature Motion for Multispectral Anisotropic Diffusion

    Pope, K. / Acton, S. / University of Arizona et al. | British Library Conference Proceedings | 1998



    A Morphological Scheme for Mean Curvature Motion and Applications to Anisotropic Diffusion and Motion of Level Sets

    Catte, F. / Dibos, F. / Koepfler, G. et al. | British Library Conference Proceedings | 1994


    Medial Axes and Mean Curvature Motion II: Singularities

    Teixeira, R. C. | British Library Online Contents | 2005


    Noise reduction in interferometric fringe patterns with mean curvature diffusion

    Diallo, M. S. / Schmitt, D. R. | British Library Online Contents | 2004