Energy management strategy (EMS) is a crucial technology for ensuring the fuel efficiency of hybrid electric vehicles (HEVs). However, complex discrete–continuous hybrid action space and physical constraints in the powertrain of HEVs present a challenge for developing high-performance EMSs based on deep reinforcement learning (DRL). This article proposes a constrained hierarchical hybrid $Q$ -network (CHHQN) algorithm, based on which a two-level EMS framework is built for direct learning within the hybrid action space, encompassing both torque distribution and gear-shifting strategies. To ensure that critical metrics such as battery’s state of charge are not violated, the designed EMS introduces an additional safety layer to correct the agent’s actions. The CHHQN-based EMS exhibits only a 3.73% difference to dynamic programming (DP) in fuel consumption. Comprehensive comparisons with other typical DRL-based methods, e.g., deep deterministic policy gradients (DDPGs) and deep $Q$ -network, demonstrate a considerable fuel economy improvement. The effectiveness of the proposed method is validated through a hardware-in-loop (HIL) test.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Constrained Hierarchical Hybrid Q-Network for Energy Management of HEVs


    Beteiligte:
    Fan, Xiaoyu (Autor:in) / Guo, Lulu (Autor:in) / Hong, Jinlong (Autor:in) / Wang, Zhenhao (Autor:in) / Chen, Hong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2024


    Format / Umfang :

    12005294 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Online energy management for HEVs

    Dextreit,C. / Changan UK Res.a.Dev.,GB | Kraftfahrwesen | 2015


    Optimal energy management of HEVs with hybrid storage system

    Vinot, E. / Trigui, R. | Tema Archiv | 2013


    Energy Management Strategy for HEVs Including Battery Life Optimization

    Li Tang / Rizzoni, Giorgio / Onori, Simona | IEEE | 2015


    Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

    Fletcher, Tom / Kalantzis, Nikolaos / Ahmedov, Ahmed et al. | British Library Conference Proceedings | 2020