An algorithm for tracking and classifying objects in urban areas using a multi-layer laser range finder is presented. Due to object disintegration caused by occlusions and fine segmentation of the data in order to separate close objects, classification is not always simple. Therefore, a multiple hypothesis approach is proposed, which keeps track of all feasible combinations of segments. The algorithm takes all segment combinations to create hypotheses and these are tracked over time using a Kalman filter. Due to the large number of hypotheses, restrictions are applied to reduce the number of hypotheses. Since applications need a description of the environment, which is described by objects, hypotheses are selected by their qualities and are provided as objects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiple hypothesis classification with laser range finders


    Beteiligte:
    Streller, D. (Autor:in) / Dietmayer, K. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    459090 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A profile measurement system for rail manufacturing using multiple laser range finders

    Molleda, Julio / Usamentiaga, Ruben / Millara, Alvaro F. et al. | IEEE | 2015


    Outdoor Mapping Using Mobile Robots and Laser Range Finders

    Hata, Alberto Yukinobu / Wolf, Denis Fernando | IEEE | 2009



    Automatic Direction Finders

    Online Contents | 1994