The paper presents an autonomous vision-based guidance and mapping algorithm for navigation of drones in a GPS-denied environment. We propose a novel algorithm that accurately uses OpenCV ArUco markers as a reference for path detection and guidance using a stereo camera. It enables the drone to navigate and map an environment using vision-based path planning. Special attention has been given towards the robustness of guidance and controlling strategy, accuracy in the vehicle pose estimation and real-time operation. The proposed algorithm is evaluated in a 3D simulated environment using ROS and Gazebo. The results have been presented for drone navigation in a maze pattern indoor scenario. Evaluation of the given guidance system in the simulated environment suggests that the proposed system can be used for generating a 2D/3D occupancy grid map autonomously without the use of high-level algorithms and expensive sensors such as lidars.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-based Guidance and Navigation for Autonomous MAV in Indoor Environment


    Beteiligte:
    Irfan, Mahammad (Autor:in) / Dalai, Sagar (Autor:in) / Kishore, Kaushal (Autor:in) / Singh, Samarth (Autor:in) / Akbar, S.A (Autor:in)


    Erscheinungsdatum :

    01.07.2020


    Format / Umfang :

    4902366 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch