Kalman filtering is a fundamental building block of most multiple-target tracking (MTT) algorithms. The other building block usually involves some type of data association schemes. Here it is proposed to incorporate a neural network into the normal Kalman filter configuration such that the neural network provides the adaptive capability the filter needs. As such the estimation error of the Kalman filter would be reduced, hence improving the MTT solution. Simulation results have shown that this claim is valid.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application of neural networks in target tracking data fusion


    Beteiligte:
    Chin, L. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    684181 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Data Fusion of Multi-Target Tracking in Wireless Sensor Networks

    Huanzhao, W. / Lin, F. / Hai, W. | British Library Online Contents | 2006


    Target tracking and fusion in vehicular networks

    Thomaidis, G. / Vassilis, K. / Lytrivis, P. et al. | IEEE | 2011


    Target Tracking and Fusion in Vehicular Networks

    Thomaidis, G. / Kaffes, V. / Lytrivis, P. et al. | British Library Conference Proceedings | 2011


    Data fusion for ground moving target tracking

    Koller, Jost | Online Contents | 2007