We present completely new very powerful solutions to two fundamental problems central to computer vision. Given data sets representing C objects to be stored in a database, and given a new data set for an object, determine the object in the database that is most like the object measured. We solve this problem through use of PIMs ("Polynomial Interpolated Measures"), which is a new representation integrating implicit polynomial curves and surfaces, explicit polynomials, and discrete data sets which may be sparse. The method provides high accuracy at low computational cost. 2. Given noisy 2D data along a curve (or 3D data along a surface), decompose the data into patches such that new data taken along affine transformations or Euclidean transformations of the curve (or surface) can be decomposed into corresponding patches. Then recognition of complex or partially occluded objects can be done in terms of invariantly determined patches. We briefly outline a low computational cost image-database indexing-system based on this representation for objects having complex shape-geometry.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    PIMs and invariant parts for shape recognition


    Beteiligte:
    Zhibin Lei (Autor:in) / Tasdizen, T. (Autor:in) / Cooper, D.B. (Autor:in)


    Erscheinungsdatum :

    01.01.1998


    Format / Umfang :

    617163 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PIMs and Invariant Parts for Shape Recognition

    Lei, Z. / Tasdizen, T. / Cooper, D. B. et al. | British Library Conference Proceedings | 1998


    Europa Clipper: PSG-10: PIMS Assessment

    Rymer, Abi / Cochrane, Corey J. | NTRS | 2021


    Europa PIMS prototype faraday cup development

    Grey, Matthew / Westlake, Joseph / Liang, Shawn et al. | IEEE | 2018


    Clipper Reconnaissance Data: ICEMAG / PIMS / RadMon

    Coren, David / Cochrane, Corey / Blacksberg, Jordana et al. | NTRS | 2018


    JOINT RAS/PIMS/AIUB GEO SURVEY RESULTS

    Agapov, V. / Dick, J. / Guseva, I. et al. | British Library Conference Proceedings | 2005