Enabling resilient autonomous motion planning requires robust predictions of surrounding road users' future behavior. In response to this need and the associated challenges, we introduce our model titled MTP-GO. The model encodes the scene using temporal graph neural networks to produce the inputs to an underlying motion model. The motion model is implemented using neural ordinary differential equations where the state-transition functions are learned with the rest of the model. Multimodal probabilistic predictions are obtained by combining the concept of mixture density networks and Kalman filtering. The results illustrate the predictive capabilities of the proposed model across various data sets, outperforming several state-of-the-art methods on a number of metrics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MTP-GO: Graph-Based Probabilistic Multi-Agent Trajectory Prediction With Neural ODEs


    Beteiligte:
    Westny, Theodor (Autor:in) / Oskarsson, Joel (Autor:in) / Olofsson, Bjorn (Autor:in) / Frisk, Erik (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2023


    Format / Umfang :

    2170951 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-Agent Trajectory Prediction with Graph Attention Isomorphism Neural Network

    Liu, Yongkang / Qi, Xuewei / Sisbot, Emrah Akin et al. | IEEE | 2022



    Multi-agent trajectory prediction

    NARAYANAN SRIRAM NOCHUR / LIU BUYU / MOSLEMI RAMIN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    MULTI-AGENT TRAJECTORY PREDICTION

    NARAYANAN SRIRAM NOCHUR / LIU BUYU / MOSLEMI RAMIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff