Histology is the science of understanding the structure of animals and plants, and studying the functional implications of biological structures. In this paper, we propose a statistical modeling approach to human histological image categorization. Texture features of the images are characterized by localized Gabor filters. The probabilistic distribution of the texture patterns from each category is approximated by a finite Gaussian mixture model. Expectation maximization (EM) procedure and minimum message length (MML) principle are used to perform density estimation and model selection, respectively. Component-wise EM and weak component annihilation are applied to avoid the drawbacks of the standard EM. Experimental validation is provided based on images from different organs and parts of the body.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Statistical categorization of human histological images


    Beteiligte:
    Dehua Zhao, (Autor:in) / Yixin Chen, (Autor:in) / Correa, N. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    147969 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Statistical Categorization of Human Histological Images

    Zhao, D. / Chen, Y. / Correa, H. | British Library Conference Proceedings | 2005


    Improving Performance of Interactive Categorization of Images using Relevance Feedback

    Ferecatu, M. / Crucianu, M. / Boujemaa, N. | British Library Conference Proceedings | 2005


    Genetic algorithms for terrain categorization of Landsat images [2103-03]

    Larch, D. E. / SPIE / United States; Central Intelligence Agency; Office of Research and Development et al. | British Library Conference Proceedings | 1994



    AUTOMATED PATTERN RECOGNITION AND SCORING METHOD OF HISTOLOGICAL IMAGES

    BROZEK JOHN / DEGALLAIX NATHALIE / NOEL BENOIT et al. | Europäisches Patentamt | 2019

    Freier Zugriff